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Uniform flows are open-channel flows, which do not change with distance at a particular time. 

The flow condition can be obtained via momentum concept. In this chapter, qualifications and 

the momentum concept for the uniform flow are given. Then, three widely-used formulas are 

introduced. The origin of these formulas are traced mechanistically and related coefficients are 

discussed. 

 

1. Qualifications for Uniform Flow 

The uniform flow has the following features: 

(1) the depth, water area, velocity, and discharge at every section of the channel reach are 

constant. 
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(2) the slope of energy line (Se), the slope of water surface (Sw), and the slope of the channel 

bottom (So) are the same. 

 

A constant velocity may be interpreted as a constant time-averaged velocity, i.e., This should 

mean that the flow possesses a constant velocity at every point on the channel section within 

the channel reach. That is, the velocity distribution across the channel section is unaltered in 

the reach. Such a stable pattern is attained when the boundary layer is fully developed. Uniform 

flow is considered to be steady only because unsteady uniform flow is practically nonexistent. 

 

2. Shear Stress in Uniform Flow 

A uniform flow is developed if the gravity force is balanced by the resistance. Consider the 

force balance in the uniform flow (momentum approach). The gravity force acting on the fluid 

element is given by 

singF Adx            (1) 

The resisting force due to shear along the wetted perimeter is 

0fF Pdx            (2) 

Equating Eq.(1) and Eq.(2) results in 

0 0hR S             (3) 

where 0S   denotes the channel slope ( tan sin    ). Note that 0 w eS S S    for uniform 

flows and Eq.(3) is valid for any channels of arbitrary cross sections. From Eq.(3), the friction 

slope is defined by 
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which is not the same as 0S  ( wS  or eS ) for flows other than the uniform flow. The friction 

slope means that the slope is obtained from the momentum concept. 

 

Figure 1. Force balance of the flow in a prismatic open channel 

 

3. Uniform Flow Formulas 

3.1 Chezy Formula (1769) 

The history of uniform flow begins with Antoine de Chezy with data on a canal upstream of 

Paris. Chezy’s formula takes the form of 

0hV C R S           (4) 

where V = mean velocity, hR  = hydraulic radius, S0 = bed slope, and C = Chezy coefficient 

representing the wall roughness. It is seen that C is of [L1/2/T]. 
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Chezy’s formula can be derived theoretically. In fluid mechanics, the shear stress at the bottom 

is represented by 

2

0 2f

V
c   

where cf is a geometric factor influenced by the boundary roughness (or flow resistance 

coefficient). That is, the resisting force is obtained by assuming that the force per unit stream 

bed area is proportional to the squared mean velocity. Then, the total resisting force is 

2
fF KV Pdx           (5) 

where K is a proportionality. From Eqs.(1) and (5), it is obtained that 0hV C R S   with 

/C K . Therefore, it can clearly be understood that Chezy’s formula was proposed based 

on the momentum concept. 

 

3.2 Manning Formula (1889) 

For incompressible, steady flows at a constant depth (uniform flow) in a prismatic open-

channel, the Manning formula is widely used. Substituting 1/ 6 /m hC C R n  into Eq.(5) leads to 

Manning’s formula such as  

2/3 1/ 2m
h

C
V R S

n
           (6) 

where the value of Cm is 1 and 1.49 for SI and USC units, respectively. This happens because 

Manning’s equation is dimensionally non-homogeneous. The following Table delivers 

representative Manning’s roughness coefficients for various boundary materials. 
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Actually, Philippe Gauckler proposed the same type of formula, very similar to Eq.(6) three 

years earlier (Hager, 2015). In order to take Gauckler’s contribution into account, Eq.(6) is also 

called Gauckler-Manning formula. Later, Strickler proposed the following formula: 

  
1/6

1/2

021.1 2 h
h

m

R
V gS R

d

 
  

 
        (7) 

where md  is the median sediment size representing the size of equivalent spheres, of which 

the surface of the channel is composed. It is interesting to note that Eq.(7), Manning-Strickler’s 

formula, is dimensionally homogeneous. 

 

Table 1. Manning’s Roughness Coefficient (Chow, 1959) 

 

 
3.3 Darcy-Weisbach Formula 
 
If Chezy coefficient (C) is replaced by 8 /g f , then the following Darcy-Weisbach formula 

is obtained: 
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f
           (7) 

where the roughness coefficient f is given by 

( / , Re)hf fn k R           (8) 

in which k is the roughness height. Values of the roughness coefficient f are given in the Moody 

diagram which is obtained from experiments of pipe flows. The expressions for f are 

24

Re
f        Re 500     (9a) 

1/4

0.223

Re
f        500 Re 25,000    (9b) 

For fully-developed turbulent flows over hydraulically-smooth boundary with Re 25,000  

1
2 log Re 0.4f

f
     Re 25,000    (9c) 

and for fully-developed turbulent flows over hydraulically-rough boundary with * / 70u k v   

or Re / ( / ) 50f R k  , 

1
2 log 2.16hR

kf
      Re 25,000    (9d) 

where k is the equivalent size of the Nikuradse type surface roughness and *u  is the shear 

velocity 0( / )  . Note that the roughness is no longer a function of Re for fully- developed 

turbulent flows over hydraulically rough surface. 

 

Among three resistance factors, the Darcy-Weisbach f  has the best theoretical background. 

It is non-dimensional, and its values for steady uniform flows are given in the Moody diagram. 
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However, it should be emphasized that the roughness coefficient f in Darcy-Weisbach formula 

is a local quantity as indicated by the above relationship whereas the roughness coefficients in 

the other formulas are reach-averaged quantities. The reason why Darcy-Weisbach formula is 

not so popular in the practical hydraulics is that the roughness coefficient comes from the pipe 

flow experiments. That is, there is no Moody diagram for the open-channel flow, and Ref   

relationship changes according to channel geometry.  

 

3.4 Dimensional Consideration 

Manning’s, Chezy’s, and Darcy-Weisbach’s formulas were originally developed empirically 

although theoretical numerous attempts were made later. From the three relationships, it is clear 

that 

1/68 m hC RC

f ng g
           (10) 

The above equation reveals that 

(a) The Chezy C has the dimension of g. 

(b) Cm in the Manning’s formula has the dimension of g because it is unreasonable to assume 

n changes with changing g. Therefore, the Manning’s n has the dimension of [L1/6]. 

 

Although n has a dimension of [L1/6], in practice the same numerical value of n is used in 

English system as in SI system, and hence the constant 1.49 absorbs not only the dimension of 

g but also the conversion factor from SI system. 
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3.5 Variation of n with Surface Roughness 

It is a well known fact that for a given rough surface the value of n hardly changes with the 

depth or discharge of the flow provided the roughness elements of the channel are statistically 

homogeneous and randomly distributed. It is clear that 

1/6
( / ,Re)h

n
f R k

k
          (11) 

As can be seen in Eq.(9d), only for fully-developed turbulent flows over a rough boundary, 

1/6/n k  is a function of /hR k  but not Re. If n is truly a measure of the surface roughness, 

1/6/n k  will be a constant independent of either /hR k  or Re. Strickler (1923) proposed that 

1/6
0.0342

n

k
           (12) 

To investigate the variation of n with the flow depth, Eqs.(9d) and (10) can be combined to 

give 

1/6 8 12
2logh h

m

gR R

n C k
   
 

        (13) 

or 

1/6

1/6

( / )

2log(12 / )8
m h

h

C R kn

k R kg
         (14) 

Rouse (1946) plotted Eq.(13) to demonstrate the insensitivity of Manning’s n to hR . This plot 

is shown in Fig. 2 ( /hR k  versus 1/6 /hR n ) together with Stricker’s formula and a straight line 

with a 6:1 slope passing through the point corresponding to the minimum value of 1/6/n k . The 
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figure indicates that Eq.(13) coincides well with Strickler’s formula, meaning that n is not 

sensitive to hR . 

 

Figure 2. Variation of 1/6 /hR n  with /hR k  
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Figure 3. Variation of 1/6/n k  with /hR k  

 

An alternative plot, perhaps more straightforward, to show the small variation of n with respect 

to hR  is given in Fig. 3 as done by Chow (1959, p.206). Figure 3 shows the change of 1/6/n k  

with /hR k . In the figure, Eq.(14) is plotted with Strickler’s formula. It can be seen that n 

changes little with hR . Note also that a thousandfold change in k results in a threefold change 

in n. This means that k is much more sensitive than n. Therefore, it can be said if sands in the 

channel bed are uniform, Manning’s n is constant along the channel, f changes a little and C 

changes significantly. Plotted also are similar relations for fully developed flow for 
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hydraulically smooth boundary (denoted by Eq.16) and for flow in the transition region 

(denoted by Eq.17). In such case, n is a function of /hR k  and Reynolds number. 

 

4. Conveyance 

When either the Chezy formula or Manning formula is used for uniform flow computation, the 

discharge becomes 

 Q K S             (15) 

and the conveyance is 

/K Q S            (16) 

The conveyance is a measure of carrying capacity of the channel section. When Chezy formula 

is used, the conveyance is 

hK CA R            (17) 

and when Manning formula is used,  

2/3m
h

C
K AR

n
            (18) 

 

5. Best Hydraulic Sections 

What is the best hydraulic cross section in designing the channel (not analyzing the channel)? 

Some channel cross sections are more efficient than others in that they provide more area for a 

given wetted parameter. Or the sections have the least wetted perimeter for a given cross- 

sectional area. 
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(1) Rectangular Cross Section 

With the help of Manning’s equation, if Q, n, and S are known, the cross sectional area can be 

expressed as a function of perimeter P as 

 

 

Channel cross sections 

2/5A cP             (19) 

where c is known. For a rectangular channel, the width (B) is 2P h , so 

2/5( 2 )P h h cP            (20) 

Differentiating eq.(19) with respect to y results 

3/52
2 ( 2 )

5

dP dP
h P h cP

dh dh
     

 
        (21) 

Setting dP/dh = 0 gives P = 4h, or 

2b h             (22) 

That is, the best rectangular hydraulic section has the depth which is one-half of the width. (Q) 

Obtain the best hydraulic section of a rectangular cross section with a free board F at both sides.  

(2) Trapezoidal Cross Section 

For the trapezoidal section, similarly, 

1 

m 
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2 2 2 2/5( 2 1 )bh mh P h m h mh cP            (23) 

Differentiating eq.(22) with respect to h yields 

24 1 2P h m mh             (24) 

Now, for a constant water depth (h), m is to be sought. That is, / 0dP dm   leads to 

1/ 3m              (25) 

Therefore, the best hydraulic section is one-half of a hexagon. 

(Q) Best hydraulic section in terms of sediment transport 

 

6. Flows in Composite Roughness Channel and Compound Channel 

Consider the channel section of composite roughness. Various methods for computing the 

equivalent roughness are available. A simple method proposed by Horton (1993) assumes that 

the velocities in the sub-sections are the same as the average velocity over the whole cross 

section. That is, the mean velocity in the i-th section is given by 

2/3

1/21 i
i

i i

A
V S

n P

 
  

 
 

The total area is expressed as 

 
3/2

3/2
3/4i i i

i i

V
A A Pn

S
    

From Manning’s formula, the total area is also given by 

2/3 2/3

3/4

V Pn
A

S
  

Equating the relationships for the areas leads to the equivalent roughness coefficient such as 
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2/3

3/2

2/3

i i
i

Pn

n
P

 
 
 


           (26) 

Similarly, for compound channel section, the mean velocity is given by 

2/3

1/21 i
i

i i

A
V S

n P

 
  

 
 

Thus the total discharge is given by 

 i i
i

Q AV             (27) 

 

It should be noted that composite roughness can be used in assessing the discharge when the 

velocity structure is relatively homogeneous over the entire section. Otherwise, mean velocity 

should be estimated at each section such as in a compound channel. 
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Problems  

1. Show that if sands in the channel bed is uniform, Manning's n is constant along the channel, 

Darcy Weisbach's f changes a little and Chezy's C changes significantly. 

 

2. Obtain the best hydraulic section of a rectangular cross section with a free board F at both 

sides. 

 

3. In general, the wide open-channel can safely defined as a rectangular channel whose width 

is greater than 10-15 times the depth of flow. That is, 

 / 10 15B y    

where B is the width and y is the flow depth. In the wide open channel, the dynamics due to the 

circulations in the direction transverse to the main flow direction can be ignored. Consider the 

(rectangular-shaped) open channel at the hydraulic laboratory in Yonsei University. The width 

of the channel is about 1 m, and the flow depth of y = 0.25 m is going to be maintained. The 

side wall is made of glass (n = 0.01), and the channel bottom is covered by the concrete block 

(n = 0.03 assumed) to supply extra roughness. Can this channel be considered as a wide 

rectangular open channel? 



 

 

Steady Uniform Flow 

16 

 

4. Derive the governing equation for long wave theory which can be applied to many problems 

in open-channel flows by averaging the following continuity and momentum equations: 

 0V 


 

 *1dV
p

dt 
  


 

where *p p z  . Explain why the wave celerity in the long wave theory is gh . 

 

 

 


